tivation Background Structural Model Results
0000 0000000 000000

Mutual trust in a dynamic game

A study on collusive pricing in the Chilean pharmacy retailing industry

Jasmine(Yu) Hao

Vancouver School of Economics University of British Columbia

Bank of Canada Graduate Student Workshop, 2020

1 / 21

 Structural Model
 Results

 00000000
 000000

Motivation

Collusion theory focus on how collusive agreements are **implemented** but not how they are **initiated** (Green et al. (2015)).

- ▶ **Implementation** of collusive structures, share of rents, managing the ongoing operation (Marshall and Marx(2012 Chapter 6)).
- Initiation involves reaching feasible agreement in implementation stage. Often overlooked by Folk's theorem.

Why understanding initiation is important?

- ▶ Penalties deter, but do not stop collusions(Harrington and Harker (2017)).
- ▶ Economic behind coordination is not well-understood.(Whinston (2003), Chapter 2).
- ▶ Post-cartel tacit collusion: mutual trust remains.(Harrington (2015); Sproul (1993))

2 / 46

octural Model

Preview

Dynamic game of collusive price leadership; firms incomplete information, biased belief.

- Based on price-fixing case in Chile pharmacy retailing in 2006 2008.
- First to model the initiation and diffusion of collusion with multi-market contact,
 - ♦ incentive problem: sub-game perfect equilibrium.
 - o coordination problem: multiple sub-game perfect equilibrium.
- Propose a parsimonious model with biased belief.
 - partly endogenize beliefs, "belief parameter" capture learning.
 - non-parametric identification of beliefs assuming rational beliefs on a subset of data(Aguirregabiria and Magesan (2019)).

3/46

Hao (VSE) Dynamic Collusion GSPA 2020

Market Overview

- Oligopolistic retail pharmaceutical distribution market (Data Source: Expert report Núñez et al. (2008)).
 - ♦ 92 % of the drugs sales are concentrated Farmacias Ahumada S.A. ("FASA"), Farmacias Cruz Verde S.A. ("Cruz Verde") and Farmacias Salcobrand S.A. ("Salcobrand").
 - § 8 % independent drug stores that do not carry branded drugs.
- Prices not regulated.
- Physicians prescribe on brands.
- Insurance cover very limited, listed price reflects out-of-pocket price.

Price Evolution

January 2006 - December 2006: Loss leadership.

Background 0000

- December 2006 August 2007: Price war.
- August 2007: Salcobrand 100% ownership sold to Juan Yarur Companies for 130 million dollars.
- November 2007 April 2008: Gradual Price increase.
- April 2008: FNE investigation started.
- The Competition Tribunal sentence Farmacias Cruz Verde Salcobrand to pay fines of approximately US\$19 million each.

ructural Model Results
0000000 000000

Price Trend

Figure: Weighted Average Price Level from Jan 2006 - Dec 2008

Hao (VSE)

Dynamic Collusion

Stylized Facts

1. Post-collusion: coordinations happen more frequently.

2. The smallest chain, Salcobrand, is the **price leader**.

```
▶ Price Leader
```

- 3. First collude on more differentiated market.
- 4. The collusion on other markets without demand link increase firms' incentive to collude.

```
▶ Firms' Incentive
```


Motivating example: Payoff

Table: The payoffs matrix (π_{CV}, π_{SB})

	Eranz		Folisanin		
l İ	CV	L	Н	L	Н
SB	L H	(3,3) (2,10)	$(10,2) \atop (5-\theta_{FC},5-\theta_{FC})$	(3,3) (0,10)	$(10,0) \atop (5-\theta_{FC},5-\theta_{FC})$

- ▶ Two players: Cruz Verde and Salcobrand,
- Two markets: Folisanin(High differentiation, suplement) and Eranz(Low differentiation, treatment for Alzheimer).
- Incomplete information:

$$\Pi_{imt} = \sum_{m} \left(\pi_{im}(\mathbf{a}_{mt}) + \theta_{MC} \mathbb{1} \left\{ a_{imt} \neq a_{imt-1} \right\} + \epsilon_{imt}(a_{imt}) \right),$$

 $\triangleright \pi_{im}, \theta_{FC}, \theta_{MC}$ common knowledge, ϵ_{imt} known distribution.

Dynamic Collusion 8 / 46 Hao (VSE) GSPA 2020

 point
 Background
 Structural Model
 Results

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Motivating Example: Single Market Equilibrium

- ▶ The two markets are not connected on demand/supply, write as separate decisions
- ▷ Sub-game perfect nash equilibria(SPNE):
 - Static NE.
 - Collusive equilibrium.
 - Price leadership(Mouraviev and Rey (2011)).
- Problem: firms may be uncertain which equilibrium the other firms think they are at.
- ▶ **Firms' learning**: firms update their beliefs given past history. (Adaptive learning/ Bayesian learning/Ficticious play/ Experience based learning)

 point
 Background
 Structural Model
 Results

 0
 0000
 000000
 000000

Motivating Example: Decision

Decision depend on payoff-relevant state variables(Maskin and Tirole (1987)) with relaxed belief.

Let $y_{imt} = a_{im,t-1}$, strategy on market m:

$$\sigma_{im}(\underbrace{y_{imt}, \quad y_{jmt}, \quad \epsilon_{imt}}_{ ext{Payoff related}}, \underbrace{h_t}_{ ext{No payoff related}})$$

 b_t is a function of history, for example,

- ▷ collusion on the other market;
- ▶ whether other firms have deviated(Fershtman and Pakes (2000))

Diffusion of collusion: If firms collude on Eranz, may collude on Folisanin.

0/21

 patrication
 Background
 Structural Model
 Results

 0
 0000
 0000
 00000

Dynamic Game: Identification of Belief

Define the associated conditional choice probabilities(CCPs)(Magnac and Thesmar (2002)):

$$\mathbf{P}_{imt}(a_{imt}, \mathbf{y}_{mt}, \mathbf{h}_t) = \int \sigma_{im}(a_{imt}, \mathbf{y}_{mt}, \mathbf{h}_t) d\epsilon_{imt}. \tag{1}$$

- ▶ Let *h* denote firms' collusion status on the other market.
- $\triangleright \mathbf{P}_{imt}(a_{imt}, \mathbf{y}_{mt}, \mathbf{h}_t) = \Lambda(\mathbf{v}_{it}^{\mathbf{B}_{it}}(a_{im}, \mathbf{y}_{mt}, h_t)),$
 - $\diamond \Lambda(\cdot)$ is the CDF of ϵ_{imt} ,
 - \diamond $\mathbf{v}_{it}^{\mathbf{B}_{it}}(a_{im},\mathbf{y}_{mt},b_t)$ choice dependent value function
- ▶ Value Function ▶ CCP
 - ▶ Identify a the **ratio of beliefs** from ratio of $\Lambda^{-1}(\mathbf{P}_{imt}(a_{imt}, \mathbf{y}_{mt}, b))$ across b. (Aguirregabiria and Magesan (2019))

► Exclusion Restrictions

11 / 46

Dynamic Collusion GSPA 2020

Data

- Daily level data, from Jan 1st, 2006, to Dec 31st, 2008.
- > 222 brands that the chains were accused of colluding.
- For each chain, each brand:
 - ♦ Nationwide sales volume (q_{imt}) ;
 - \diamond Nationwide sale-weighted average price (p_{imt}) .
- Among the products:
 - Mostly are prescription drugs;
 - 70 % of the drugs are treatments for chronic diseases.
- Data source: Competition Tribunal of Chile.

Dynamic Game: Flow Payoff

$$\Pi_{i}(\mathbf{x}_{mt}, \mathbf{a}_{mt}) = \sum_{m \in \mathcal{M}} \left[R_{im}(\mathbf{x}_{mt}, \mathbf{a}_{mt}) + F_{im}(\mathbf{x}_{mt}, \mathbf{a}_{mt}) + \epsilon_{imt}(a_{imt}) \right],$$

where

- \triangleright R_{im}($\mathbf{x}_{mt}, \mathbf{a}_{mt}$): estimated profit, level of differentiation;
- \triangleright F_{im} fixed cost, unknown to economist;
 - Menu cost
 - Fixed cost
 - Leadership cost
- $ho \epsilon_{imt}(a)$ i.i.d across players, markets, states and actions.(Magnac and Thesmar (2002))

Fixed Cost Specification

13 / 21 13 / 46

Dynamic Game: Overview

Goal: Estimate **beliefs** \mathbf{B}_{im} , **profit** R_{im} and **fixed cost** F_{im} . The dimensionality of the state is **huge**($2^{(3*200)} \approx 4*10^{180}$). Make the following restrictions:

- ▶ The decision of prices is restricted to two price levels: low and high.
- \triangleright A market manager (i, m) make separate decision from other markets.
- ightharpoonup Beliefs are biased by a single firm-history-specific parameter $\lambda_i(b_t) \in (\mathrm{o}, \mathrm{i})$.
 - $\diamond \ \lambda_i(b_t) = o$, player i believe in competitive equilibrium.
 - $\diamond \ \lambda_i(b_t) = {\scriptscriptstyle
 m I}$, player i believe in sub-game perfect equilibrium of price leadership.
- ▷ h_t is number of colluded markets. $h_t \in \{[0, 30], [31, 90], [91, 150], [151, \infty)\}.$

14 / 21

 Background
 Structural Model
 Results

 0000
 000000●
 000000

Dynamic Game: Estimation of Variable Payoff

- \triangleright Estimation of R_{im} .
 - Demand / Marginal cost estimated using Jan 2006 Nov 2006 (competition episode);
 - Simple logit demand, market is brand level, no demand linkage;

 Demand Estimation
 - ♦ Constant marginal cost, first order condition from Bertrand-Nash competition;
 ▶ Marginal Cost Estimation
 ▶ Estimated Demand
 Demand Check
 Demand Check IV
 Demand Check OLS
- \triangleright Estimation of λ_i and F_{im}
 - Revealed preference based on high/low price choice from Nov 2007 April 2008(coordination episode).
 - ▶ Estimation Steps

ration Backgrou
0000

Prediction of the price level of Jan 2006 - Nov 2006

ound Structural Mo

Counterfactuals

Consider two counterfactuals

- 1. Impose a cap for the price increase(10%);
- 2. Divest the industry by enforcing the act such that each chain divests 25% of their stores and create a new firm with the assets. (Harrington (2018)(pp.234)).

Results

tivation Background Structural Model Results
0 000 0000000 00●000

Counterfactuals: Nonrational Belief

Figure: The Model Counterfactual With Non-Rational Belief

Results 000000

Counterfactuals: Rational Belief

Figure: The Model Counterfactual With Rational Belief

Conclusion

The contribution of this project:

- ▶ First to model *initiation* of collusion.
 - incentive problem: endogenize government penalty.
 - coordination problem: biased beliefs.
- Propose relaxed belief dynamic game model.
 - Make policy counterfactuals.

 Background
 Structural Model
 Results

 0000
 0000000
 00000●

Thank You

Thank You

Competition Tribunal Sentence

- ▶ The Competition Tribunal sentence Farmacias Cruz Verde Salcobrand to pay approximately US\$19 million each (Maximum applicable fine).
- Collusive agreement to increase prices of at least 206 pharmaceutical drugs between December 2007 and March 2008.
- The price in real values before vs. after the break it was 16.4% for SB, 18.6% for CV and of 16.9% for FASA.

▶ Price Trend

1-2-3 Price Increase

Define the coordinated price increase as:

- 1. The increase of price (> 15% or more than 1500 peso) is happened for a certain product for 3 firms.
- 2. The increase is started by one firm, and the other two firms follow within at most 4 days.
- 3. The price levels before and after increases should be reasonably close(< 15%).
- 4. The price level is maintained for at least 3 days.

► Number of coordinated price increase

▶ Facts

Hao (VSE) Dynamic Collusion GSPA 2020 23 / 46

Coordinated Price Increase

 Hao (VSE)
 Dynamic Collusion
 GSPA 2020
 24 / 46

Table: The Coordinated Price Increase Frequency

Time periods	Frequency	Percentage	Monthly average
Jan,2006 - Nov, 2007	24	12.8%	1.04
Dec,2007 - Apr, 2008	137	72.9%	27.40
May,2008 - Dec, 2008	27	14.4 $\%$	3.86
Total	188	100%	5.22

¹ The coordinated price increase is defined by the action such that one firm make a price increase on a certain product, and the other firms follow within a reasonable short time period.

▶ Definition of coordinated price increase

▶ Facts

 Hao
 (VSE)
 Dynamic Collusion
 GSPA 2020
 25 / 46

² The table recomputed using the method in the expert report requested by FNE. Núñez et al. (2008).

Table: The 1-2-3 Price Increase/ Decrease Frequency

Sequence	Jan,2006 Dec,2007 -Nov,2007 -Apr,2008		May,2008 -Dec,2008	Total
	1-2-3	Price Increas	se	
SB lead	11	126	10	147
FA lead	12	8	10	30
CV lead	10	0	12	31
Total	32	143	32	188

 $^{^{1}}$ The table is recomputed according to the method reported in the expert report Núñez et al. (2008)

▶ Definition of coordinated price increase

▶ Facts

Hao (VSE) Dynamic Collusion GSPA 2020 26 / 46

Based on the foregoing, the relevance of SB on the subject is highlighted, because of the total increases 1-2-3 accounted for, 75% of them (162 increases) are made in the first movement.

Time Varying Incentive

Estimate a Cox survival(Cox, 1972) model following that of Chilet (2016).

- \triangleright A market is defined as a product j, where three firms compete on.
- A failure is defined as the market starting to collude.
- Explainatory variables
 - History is the number of drugs that firms have already colluded on.
 - ♦ The elasticity is estimated in the first stage with logit demand model.
 - Market size is the daily average quantity sold by three firms before collusion(Oct, 2007).
 - Price dispersion is the average weekly price standard deviation(Jan, 2006 -Oct, 2007).
 - Share dispersion: the median of weekly share dispersion. Reflects the asymmetry of the firms' shares.

Hao (VSE) Dynamic Collusion GSPA 2020 27 / 46

Firms' Incentive

	Cox Prop. Hazard	Time Varying Effect
number of collusion	-0.8638** (0.4374)	-0.0236*** (0.0065)
cross elas	`0.0006´	`0.0938´
cross elas * t	(0.0006)	(0.0915) - 0.014
market size	0.0411	(0.0138) -17.1882*
market size * t	(0.0987)	(9.3957) 2.5779*
price dispersion	12.1707***	(1.4115) 1771.7916**
price dispersion * t	(4.7055)	(840.5366) -265.5883**
share dispersion	0.8859	(127.0097) -718.1204*
share dispersion * t	(2.5878)	(388.6157) 107.7807*
NI.	1204	(58.3505)
N log-likelihood	1394 -825.0	1394 -1025.0

 Hao
 (VSE)
 Dynamic Collusion
 GSPA 2020
 28 / 46

Table: Time of Collusion - Survival Model

	Market Characteristics	Cumulative Past Events		Non-cumulative Past Events		
	(1)	(2)	(3)	(4)	(5)	(6)
Cross Elas	0.0248	0.0357	0.035	0.0244	0.0244	0.0247
	(0.0246)	(0.0315)	(0.0314)	(0.0246)	(0.0245)	(0.0246)
Cross Elas $* Ln(t)$	-0.0037	-0.0053	-0.0052	-0.0036	-0.0036	-0.0037
	(0.0037)	(0.0047)	(0.0047)	(0.0037)	(0.0037)	(0.0037)
Market Size	10.1006***	9.3913*	9.7513*	10.297***	9.8346***	10.1665**
	(2.553)	(5.257)	(5.2558)	(2.5748)	(2.5483)	(2.5561)
Market size * Ln(t)	-1.5065***	-1.4001*	-1.4538*	-1.5359***	-1.4664***	-1.5165**
	(0.3826)	(0.7894)	(0.7893)	(0.3859)	(0.3819)	(0.3831)
Share Disp	45.3541	52.9556	70.103	49.4483	45.4013	45.3579
	(56.7315)	(80.71)	(80.0564)	(57.1709)	(56.432)	(56.7494)
Share Disp $*$ $Ln(t)$	-6.774	-7.8864	-10.4655	-7.3866	-6.7774	-6.7748
	(8.481)	(12.0943)	(11.9964)	(8.5473)	(8.4364)	(8.4836)
Sucess Coord		-0.0035 (0.0048)	-0.0028 (0.0048)			
Fail Coord		0.0109***	(0.00.0)			
Price Dec CV		(0.0037)		0.0084		
rne Da Cv				(0.0176)		
Price Dec FA				(0.0170)	-0.0626*	
17RC DC 121					(0.0381)	
Price Dec SB					()	0.0142
						(0.0242)
N	16493	15270	15270	16493	16493	16493
log-likelihood	-3232.0	-3101.0	-3122.0	-3232.0	-3225.0	-3232.0

Dynamic Game: Value Function

▷ Choice dependent value function:

$$\mathbf{v}_{it}^{\mathbf{B}_{it}}(a_{im},\mathbf{x}_t) = \mathbb{E}_{\mathbf{B}_{it}}\left[\pi_{im}(a_{imt},\boldsymbol{a}_{-im},\boldsymbol{x}_{mt}) + \beta f(\boldsymbol{x}_{j,t+1}|\boldsymbol{a}_{mt},\boldsymbol{x}_{mt})\mathbf{V}_{im}(\boldsymbol{x}_{j,t+1})\right],$$

▶ Value function:

$$\mathbf{V}_{im}(\mathbf{x}_{jt+1}) = \max_{a_{im}} \{ \mathbf{v}_{it}^{\mathbf{B}_{it}}(a_i, \mathbf{x}_t) + \sum_{m \in \{\textit{Folisanin.Eranz}\}} \epsilon_{imt}(a_{imt}) \}.$$

Dynamic Game Best Response

Hao (VSE) Dynamic Collusion GSPA 2020 29 / 46

Dynamic Game Identification

Magnac and Thesmar (2002) propse the following assumptions to identify markov perfect equilibrium dynamic game.

Assumption (Identification of MPE Dynamic Game)

- 1. a_{it}, x_{it} have finite supports.
- 2. $\epsilon_{it}(a_i)$ is additive seperable.
- 3. ϵ_{it} is conditionally independent of $\mathbf{x}_t | \mathbf{x}_{t-1}$.
- 4. Firms' private information $(\epsilon_{it}, \ldots, \epsilon_{Nt})$ are drawn from T_1EV distribution $G_i(\cdot)$, ϵ_{it} 's are independently distributed over time.

▶ Dynamic Game Best Response

Hao (VSE) Dynamic Collusion GSPA 2020

30 / 46

Assumption: Exclusion Restrictions

Assumption (Exclusion Restriction)

The vector of state variables \mathbf{x}_{mt} , h_t satisfy the following conditions:

$$(A) \pi_{im}(\boldsymbol{a}_{mt}, \boldsymbol{x}_{mt}, h_t) = \pi_{im}(\boldsymbol{a}_{mt}, \boldsymbol{x}_{mt}),$$

(B)
$$\pi_{im}(a_{imt}, a_{-imt}, x_{imt}, x_{-imt}, h_t) = \pi_{im}(a_{imt}, a_{-imt}, x_{imt}, x'_{-imt}, h_t),$$

$$(C) f(\mathbf{x}_{m,t+1}|(a_{imt},a_{-im}),\mathbf{x}_{mt}) = \prod_{i\in\mathcal{I}} f(\mathbf{x}_{im,t+1}|a_{imt}).$$

▶ Dynamic Game Best Response

Hao (VSE) Dynamic Collusion GSPA 2020 31 / 46

Table: Average Quantity Level Before and After the Price Increase

	Before	After
All drugs	215.5	200.3
By Prescription		
Prescription Drugs	214.4	201.2
Over-the-Counter Drugs	221.0	195.5
By Chronic Disease		
Chronic Disease	165.8	154.0
Non-Chronic Disease	308.1	286.1

¹ For each drug, I compute the average daily sale from 14 days to 7 days before the price increase, and 7 days to 14 days after the price increase.

Dynamic Game Estimatic

Hao (VSE) Dynamic Collusion GSPA 2020 32 / 46

² The daily average were computed using the Dec 2007 - Apr 2008 period.

Average Drug Prices in Latin America

Table: Drug Price in Latin America in year 2006 - 2008

Country	2006 (USD)	2007 (USD)	2008 (USD)	2006 - 2007 (%)	2007 - 2008 (%)
Argentina	5.93	6.36	7.3	7.4	14.7
Bolivia	4.73	4.9	5.98	3.6	22
Brazil	6.86	8.03	8.97	17.1	11.7
Chile	4.15	4.12	4.73	-0.6	14.8
Colombia	4.4	5.41	5.93	23.1	9.5
Ecuador	4.35	4.57	4.77	5.2	4.3
Paraguay	3.65	4.17	4.73	14.2	13.4
Peru	5.81	6.34	7.22	9	14
Uruguay	3.3	3.47	4.05	5	16.8
Venezuela	6.14	7.4	9.42	20.5	27.4

Data source: IMS, Vasallo C. The medicine market in Chile: characterization and recommendations for economic regulation. Final report for the Ministry of Health Economics of MINSAL, Chile. 2010 Jun.

▶ Dynamic Game Estimation

Hao (VSE) Dynamic Collusion GSPA 2020 32 / 46

Consumer Demand Model

Market defined as each brand. Consumers are homogeneous, market size is fixed. Each t, the consumer on the market choose to buy from a firm i. For each consumer who buys drug j, firm i at time t, the utility is

$$u_{ijt} = \beta_j - \alpha_j p_{ijt} + \xi_{jt}^{(1)} + \xi_{ijt}^{(2)}, \qquad (2)$$

33 / 46

- $\triangleright \beta_i$ is the utility parameter, α_i is the *price paramters*,
- $\triangleright \xi_{jt}^{(i)}$ is the firm-product fixed effect, and $\xi_{ijt}^{(2)}$ is the time-varying demand shock.
- $\triangleright \ \xi_{ijt}^{(2)}$ follows AR(1) process: $\xi_{ijt}^{(2)} = \rho_j \xi_{ij,t-1}^{(2)} + \epsilon_{ijt}$.
- $\triangleright \ \epsilon_{ijt}$ i.i.d across i, j, t.

Parameters: $\{\beta_j, \alpha_j, \rho_j, (\xi_{jt}^{(1)})_{i \in \mathcal{I}}\}_{j \in \mathcal{J}}$ Dynamic Game Estimation

Hao (VSE) Dynamic Collusion GSPA 2020

Identification of α_i

▶ The demand model implies for drug j

$$\log(s_{ijt}/s_{ojt}) = \beta_j - \alpha_j p_{ijt} + \xi_{jt}^{(1)} + \xi_{ijt}^{(2)}$$
(3)

- ▶ Endogeneity: $cov(p_{ijt}, \epsilon_{ijt}) \neq o$.
- \triangleright Define \triangle as the time difference operarator: $\triangle x_{ijt} = x_{ijt} x_{ij,t-1}$.
- \triangleright Identification of price sensitivity parameter α_i :

$$\Delta \log(s_{ijt}/s_{ojt}) - \rho_j \Delta \log(s_{ijt}/s_{ojt}) = -\alpha_j (\Delta p_{ijt} - \rho \Delta p_{ij,t-1}) + \Delta \epsilon_{ijt}.$$
 (4)

 $\triangleright E[\Delta \epsilon_{ijt} | p_{ijt-k}] = \text{o for } k \geq 2(\text{Arellano and Bond (1991)}).$

► Dynamic Game Estimation

Hao (VSE) Dynamic Collusion GSPA 2020 34 / 46

Marginal cost

- ▶ The three big chains have similar wholesale costs as suggested Chilet (2016); Núñez et al. (2008).
- ▶ The specification of constant marginal cost is product specific and does is not time-varying:

$$c_{ijt} = c_j + \omega_{ij}^{(1)} + \omega_{ijt}^{(2)}, \tag{5}$$

35 / 46

where

- \diamond c_i is the average cost of firm,
- $\diamond \ \omega_{ij}^{(i)}$ is the firm-product fixed effect,
- $\diamond \ \omega_{ijt}^{(2)}$ is the i.i.d time-varying cost shocks.
- \triangleright Parameters: $\{c_j, (\omega_{it}^{(i)})_{i \in \mathcal{I}}\}.$

Dynamic Game Estimation

Hao (VSE) Dynamic Collusion GSPA 2020

Marginal Cost Identification

Marginal cost is identified from

- Assume firms compete in price.
- ▶ From Jan 2006 Nov 2006, the firms are in Bertrand-Nash equilibrium.

The firms are maximizing the variable profit by setting price, and the first order condition

$$\hat{c}_{ij} = \frac{\mathbf{I}}{T_{data}} \sum_{t} \left(p_{ijt} - \frac{\mathbf{I}}{\alpha} (\mathbf{I} - s_{ijt})^{-1} \right). \tag{6}$$

Dynamic Game Estimation

Hao (VSE) Dynamic Collusion GSPA 2020 36 / 46

Fixed Cost Specification

$$F_{imt} = MC_{im} \mathbb{1}(a_{imt} \neq x_{imt}) + a_{imt}FC_{im} + a_{imt} \mathbb{1}(\mathbf{a}_{-imt} = \mathbf{o})LC_{im};$$

- \triangleright Menu cost: $MC_{ii} = \gamma_i^{MC, \circ}$,
- $\triangleright \text{ Fixed cost:} FC_{ii} = \gamma_i^{FC, o} + \gamma_i^{FC, Profit} \widehat{\Delta \pi}_{ii} + \gamma_i^{FC, Size} \overline{MS}_i.$
- \triangleright Leadership cost: $LC_{ii} = \gamma_i^{LC,Profit} \widehat{\Delta \pi}_{ii} + \gamma_i^{LC,Size} \overline{MS}_i$.

Parameter of interest $\boldsymbol{\theta}_i = \{\gamma_i^{MC,o}, \gamma_i^{FC,o}, \gamma_i^{FC,Size}, \gamma_i^{FC,Profit}, \gamma_i^{LC,Size}, \gamma_i^{LC,Profit}\}$

Dynamic Game Estimation Dynamic Game Flow Payoff

Dynamic Collusion **GSPA 2020** 37 / 46

Check the demand estimation

After obtain the demand parameters: $\{\beta_j, \alpha_j, \rho_j, (\xi_{jt}^{(1)})_{i \in \mathcal{I}}\}_{j \in \mathcal{J}}$ and $\{c_j, (\omega_{jt}^{(1)})_{i \in \mathcal{I}}\}$, check the price level:

- 1. Solve the first order condition of $\max_{p_{ijt}} s_{ijt}(p_{ijt}, \boldsymbol{p}_{-i,jt})(p_{ijt} c_{ij})$ to obtain $\{p_{ii}^{Nasb}\}_{i,j}$.
- 2. Solve the first order condition of $\max_{p_{ijt}} \left[s_{ijt}(p_{ijt} c_{ij}) + \sum_{i'} s_{i'jt}(p_{i'jt} c_{i'j}) \right]$ to obtain $\{p_{ij}^{Collusion}\}_{i,j}$.
- 3. Use the marginal cost as $\{p_{ij}^{War}\}_{i,j}$.

▶ Dynamic Game Estimation

Hao (VSE) Dynamic Collusion GSPA 2020

38 / 46

Price Level Predicted Using IV

Price Level Predicted Using OLS

Appendix Competition Tribunal Sentence Coordinated Price Increase Dynamic Game Best Response Anecdotal Evidence Demand Model Marginal Cost
O 000000 00 00 00

Estimated Elasticity

Table: Estimated Demand Price Coefficients

$\hat{\alpha}_j$	IV	OLS
\hat{lpha}_j	0.8236	1.1828
s.e. (\hat{lpha}_j)	[0.2257, 1.6108]	[0.2508, 2.6102] 0.0630
R-square	0.4625	[0.0239, 0.1103] 0.4931
Durbin Test Stats	[0.0178, 0.7848] 54.8629	[0.2608, 0.6614] -
	[7.6387, 109.1056]	-
No. $\hat{\alpha}_j$ negative No. of Markets	4 214	6 214

¹ The first row shows the mean of the statistics averaged across markets.

Demand Check Demand Check IV Demand Check OLS

Hao (VSE) Dynamic Collusion GSPA 2020

41 / 46

 $^{^2}$ The second row shows the 10 %th and 90 %th quantile of the statistics.

Dynamic Game - Estimation Steps

Make the following assumptions:

- $\triangleright \beta$ the discount factor is set to 0.9995.
- $\triangleright \lambda_i(\bar{b}) = \mathbf{I}$, firms hold rational belief in the last episode.

I followed the following steps in order to obtain the structural parameters $\{\lambda_i, \theta_i\}_{i=CV,FA,SB}$.

- 1. Obtain the non-parametric \mathbf{P}_{im}^{o} .
- 2. Estimate λ_i and compute the belief \mathbf{B}_{it}^{o} .
- 3. Given \mathbf{P}_{i}^{o} and \mathbf{B}_{i}^{o} , estimate $\hat{\boldsymbol{\theta}}_{i}$ with Aguirregabiria and Mira (2002) estimator.
- 4. Update the probability of initializing a price increase.

Dynamic Game Estimation

Hao (VSE) Dynamic Collusion GSPA 2020

42 / 46

Estimated $\lambda(b)$

Estimation of Belief Parameters $\lambda(b)$					
h	Cruz Verde	FASA	Salcobrand		
0 - 30	0.5187	0.3176	0.4699		
	(0.1407)	(0.1527)	(0.1037)		
30 - 90	0.6107	0.6291	0.4304		
	(0.1858)	(0.1776)	(0.1049)		
90 - 150	0.6183	0.6513	0.4791		
	(0.1658)	(0.1727)	(0.1029)		
$150 \; + \;$	1.	1.	1.		

Insample Prediction

Hao (VSE) Dynamic Collusion GSPA 2020 43 / 46

Estimation of Strucatural Costs (Thousand of Pesos)					
		Rational Belief	Non-rational Belief		
Menu Cost	Cruz Verde	-232.4682	-7.6522		
	FASA	-730.8975	-276.4451		
	Salcobrand	-22.3094	-298.0671		
Fixed Cost	Cruz Verde	-329.8713	-1.4162		
		[-671.2018, 4.2168]	[-3.96 , 1.19]		
	FASA	-645.5794	-114.1933		
		[-1260.4551, -70.0513]	[-201.21, -32.75]		
	Salcobrand	-74.6131	-31.8427		
		[-135.4597, -0.0099]	[-56.29, -1.87]		
Leader Cost	Cruz Verde	-9447.4493	-6884.5454		
		[-16557.9705, 17.1637]	[-12219.71, -137.79]		
	FASA	-12843.0407	-7683.2954		
		[-25449.8779, 206.1243]	[-14242.44, -591.13]		
	Salcobrand	-349.9771	-2667.0397		
		[-834.9016, -10.2718]	[-4457.68, 40.50]		

¹ In the bracket report 10-th and 90-th equantile of the estimated costs across products.
Insample Prediction

Prediction Under Equilibrium Belief Assumption

Insample Prediction

Prediction Under Non-Equilibrium Belief Assumption

Insample Prediction

References I

- Aguirregabiria, V. and Magesan, A. (2019). Identification and Estimation of Dynamic Games When Players' Beliefs are not in Equilibrium. *The Review of Economic Studies*, (0):1–44.
- Aguirregabiria, V. and Mira, P. (2002). Swapping the Nested Fixed Point Algorithm: A Class of Estimators for Discrete Markov Decision Models. *Econometrica*, 70(4):1519–1543.
- Arellano, M. and Bond, S. (1991). Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations. *The Review of Economic Studies*, 58(2):277.
- Chilet, J. A. (2016). Gradually Rebuilding a Relationship: The Emergence of Collusion in Retail Pharmacies in Chile.
- Fershtman, C. and Pakes, A. (2000). A Dynamic Oligopoly with Collusion and Price Wars. *The RAND Journal of Economics*, 31(2):207–236.
- Green, E., Marshall, R., and Marx, L. (2015). Tacit Collusion in Oligopoly. In *The Oxford Handbook of International Antitrust Economics*, volume 2, pages 1–25.

Hao (VSE) Dynamic Collusion GSPA 2020 46 / 46

References II

- Harrington, J. (2015). A Theory of Collusion with Partial Mutual Understanding.
- Harrington, J. (2018). Lectures on Collusive Practices.
- Harrington, J. and Harker, P. (2017). A Proposal for a Structural Remedy for Illegal Collusion.
- Magnac, T. and Thesmar, D. (2002). Identifying dynamic discrete decision processes. *Econometrica*, 70(2):801–816.
- Maskin, E. and Tirole, J. (1987). A theory of dynamic oligopoly, III Cournot Competition. *European Economic Review*, 31:947–968.
- Mouraviev, I. and Rey, P. (2011). Collusion and leadership. *International Journal of Industrial Organization*, 29(6):705–717.
- Núñez, J., Rau, T., and Rivera, J. (2008). Expert Report, Chilean National Economic Prosecutor, Case No. 184-2008.
- Sproul, M. (1993). Antitrust and Prices. *Journal of Political Economy*, 101(4):741–754.
- Whinston, M. (2003). Lectures on Antitrust Economics Chapter 2: Price Fixing.

Hao (VSE) Dynamic Collusion GSPA 2020 46 / 46